A symposium on Energy Transitions & Energy Technologies: Moving towards sustainable futures in Denmark and Japan

How can we deploy affordable offshore wind power in Europe and Japan

Agenda

• Who we are

• Offshore Wind Market in Europe

• What we can deploy in Japan

Competencies for Synergies

Our Technologies, Your Tomorrow

Founded in 1884 (Established in 1950) Head Office Tokyo, Japan Sales 3,914.0 billion Yen %1 (35,191 million Euro) Number of Employees 82,728 (consolidated) %2 16,824 (Non-consolidated) %2

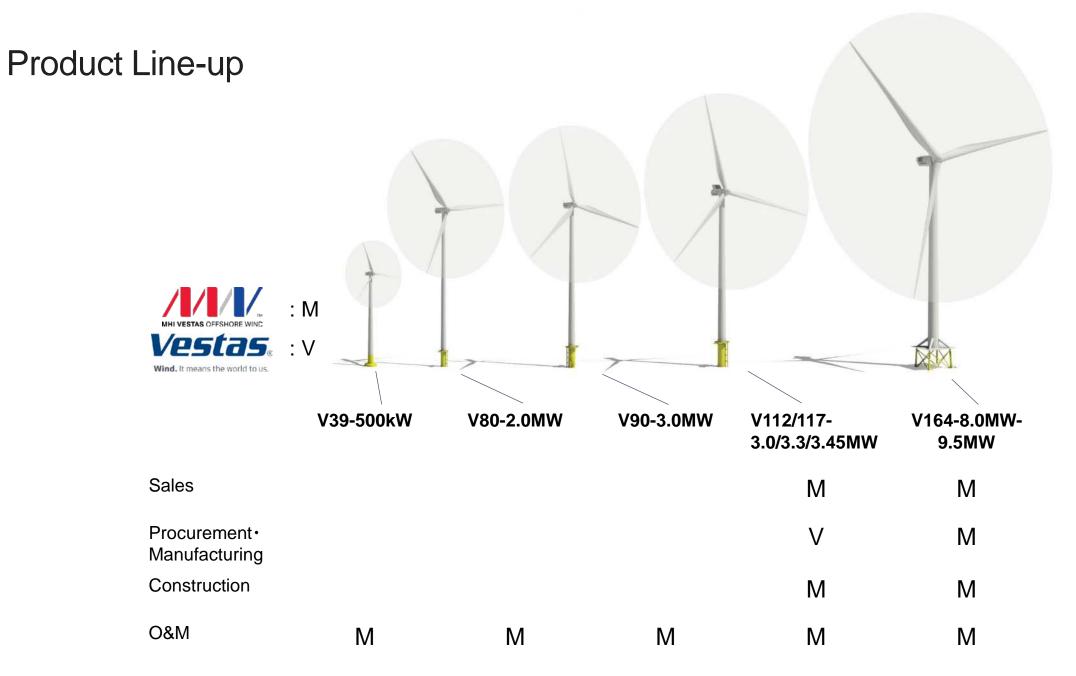
Products and Operations;

Engineering, manufacture and sale of ships, power systems, environmental improvement equipment, industrial machinery, aircraft, space systems, air-conditioners, etc.

%1 1 April 2016 ${\sim}31$ March 2017 %2 as of 31 March 2017

- MHI has Strong and long-standing presence in global power unit industry
- MHI has brought not only financial foundation but a wide range of technology background, advanced manufacturing management and network with Japanese industry.

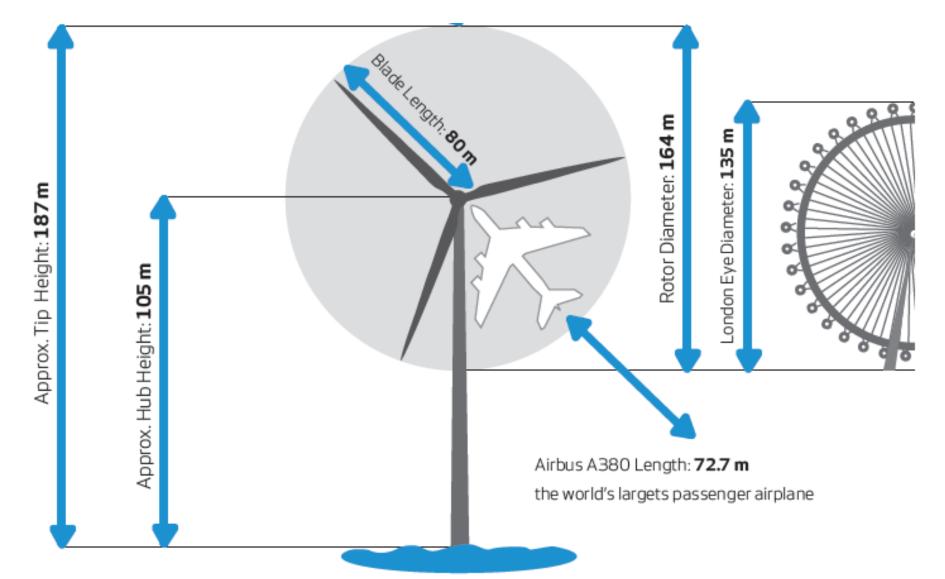
Wind. It means the world to us.


Founded in 1898 (Sold and installed its first turbine in 1979) Head Office Aarhus, Denmark Sales 10,237 million Euro %3 Number of Employees 21,824% 4 Products and Operations; R&D, engineering, procurement, manufacture, sale and service of wind turbines

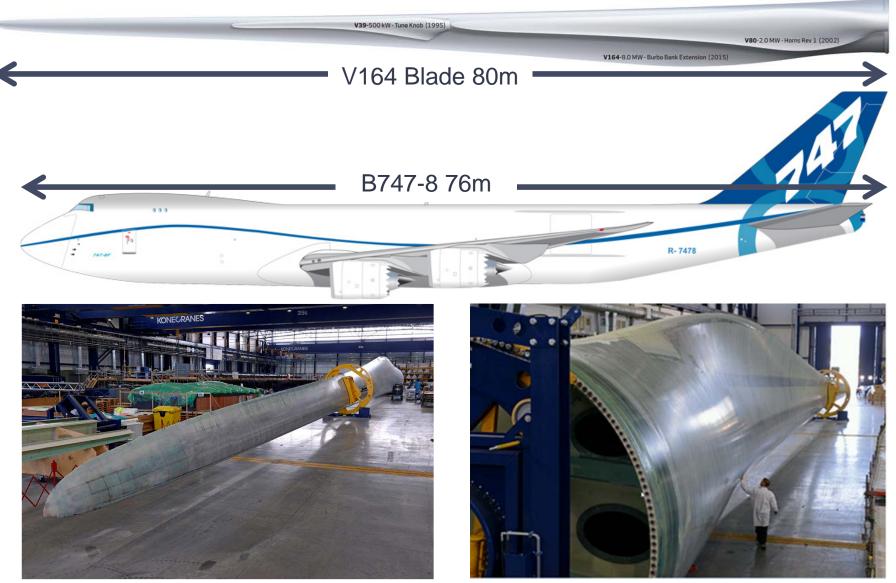
- 3 1 January~31 December 2016
- ※4 as of 31 December 2016
- 2016 as of 31 March
- Vestas has a proven track record of 83GW^{*5} of installed wind turbines
- A pioneer in offshore wind and the most knowledgeable player in the wind industry
- High reliability based on extensive verification testing

Established in 2014 on decades of experience Delivering affordable offshore wind power

Company name	MHI Vestas Offshore Wind A/S (MVOW)
Head Office	Aarhus, Denmark
CEO / Co-CEO	Jens Tommerup / Tetsushi Mizuno
Product and Operations	R&D, engineering, procurement, manufacture, sales and service of offshore wind turbine
Number of Employee	2336 employees (as of 13 Nov 2017)
Establishment	1st April, 2014
Equity Rate	Mitsubishi Heavy Industries, Ltd.(MHI) 50% VestasWind Systems A/S (VWS) 50%

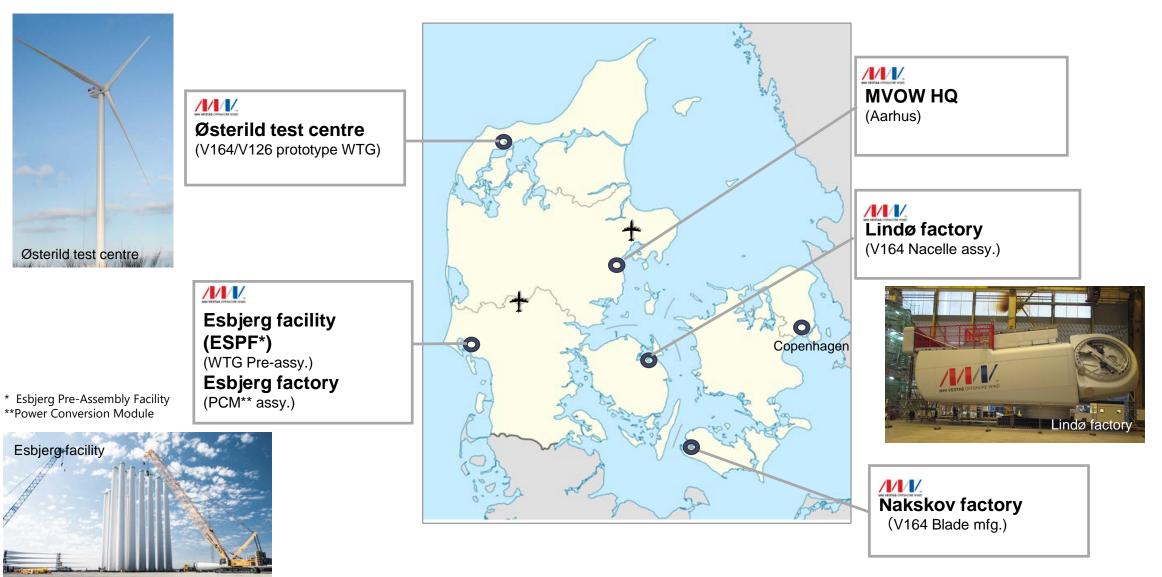


The V164-8.0 MW turbine – the world's most powerful available turbine –


Rated power Rotor diameter Blade length Blade weight Swept area Nacelle dimensions Nacelle weight Tower height 8,000 kw 164 m 80 m 35 tonnes/each 21,124m2 H 8m x L 20m x W 8m approx. 390 tonnes 105 m

Burbo Bank Extension United Kingdom (V164-8.0MW x 32 units) The first 8MW class offshore wind turbine in the world In operation since May 2017

Dimensions – V164-8.0MW



V164 - Blades

MVOW Footprint in Denmark

9 | 22 Nov 2017 | Classification: Public

MVOW Footprint in UK

10 | 22 Nov 2017 | Classification: Public

Our Track Record – 2.7 GW Installed

60

180

953 turbines installed across 23 projects, ~ 2.2 GW under service contract

BARROW*

Country	United Kingdom
Owner	Dong Energy
Installation year	2006
Number of turbines	30
Turbine type	V90-3.0 MW
MW:	90

NORTH HOYLE*

Country	United Kingdor
Owner	Npower Renewable
Installation year	200
Number of turbines	3
Turbine type	V80-2.0 MV
MW:	6

KENTISH FLATS*

Country	United Kingdom
Owner	Vattenfall
Installation year	2005
Number of turbines	30
Turbine type	V90-3.0 MW
MW:	90

KENTISH FLATS EXT.*

Country	United Kingdom
Owner	Vattenfall
Installation year	2015
Number of turbines	15
Turbine type	V112-3.3 MW
MW:	50

WINDFLOAT-FLOATING FOUNDATION

Country	Portugal
Owner	Windplus
Installation year	2011
Number of turbines	1
Turbine type	V80-2.0 MW
MW:	2

SCROBY SANDS	
Country	United Kingdom
Owner	E.ON UK
Installation year	2004
Number of turbines	30
Turbine type	V80-2.0 MW
MW:	60
	0

ROBIN RIGG Country United Kingdom E.ON UK Owner Installation year 2009 Number of turbines Turbine type V90-3.0 MW MW:

Burbo Bank Extension*		
Country	United Kingdom	
Owner	DONG Energy	
Installation year	2016-17	
Number of turbines	32	
Turbine type	V164-8.0 MW	
MW:	258	

Nobelwind* Country Belgium Owner Parkwind Installation year 2016-17 Number of turbines 50 Turbine type V112-3.3 MW MW: 165

THANET*	
Country	United Kingdom
Owner	Vattenfall
Installation year	2010
Number of turbines	100
Turbine type	V90-3.0 MW
MW:	300

HORNS REV Country

BLIGH BANK*

Installation year

Turbine type

Number of turbines

Belgium

2010

55

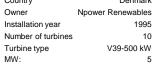
165

Belwind N.V.

V90-3.0 MW

Country

Owner


MW:

Denmark Owner Vattenfall & Dong Installation year 2002 Number of turbines 80 Turbine type V80-2.0 MW MW: 160

Blyth Offshore Wind Farm* Country United Kingdom EDF Energy Owner

Renewables Installation year 2017 Number of turbines 5 Turbine type V164-8.0 MW MW: 41.5

TUNØ KNOB Country

Rampion* Country

United Kingdom Owner E.On Installation year 2017-18 Number of turbines 116 Turbine type V112-3.45 MW MW: 400

Denmark Npower Renewables

10

5

MAADE*	
Country	Denmark
Owner	European Energy
Installation year	2016
Number of turbines	2
Turbine type	V164
MW:	16

SPROGØ*

C	ountry	Denmark
C	wner	Sund & Bælt
Ir	nstallation year	2009
N	lumber of turbines	7
Т	urbine type	V90-3.0 MW
N	1W:	21

NORTHWIND*

Country	Belgium
Owner	Northwind NV
Installation year	2013
Number of turbines	72
Turbine type	V112-3.0 MW
MW:	216

ENECO LUCHTERDUINEN*

Country	The Netherlands
Owner	Eneco &
Owner	Mitsubishi
Installation year	2015
Number of turbines	43
Turbine type	V112-3.0 MW
MW:	129

KÅRFHAMN*

Country	Sweden
Owner	E.ON
Installation year	2013
Number of turbines	16
Turbine type	V112-3.0 MW
MW:	48

EGMOND AAN ZEE

Country	UK	
Owner	E.ON	
Installation year	2014	
Number of turbines	73	
Turbine type	V112-3.0 MW	
MW:	219	

*Currently	under	service	contract

Installation year Number of turbines Turbine MW:

Country

Owner

type	V90-3.0 MW
	108

	\neq	
OFFS	HORE	WINDPARK Q7*
Country		The Netherland
Owner		WP Q7 Holding B.

SHC	RE W	INDPARK	Q7*
		The Noth	orland

Jounny	The Houldhalle
Owner	WP Q7 Holding B.
nstallation year	200
Number of turbines	e
Turbine type	V80-2.0 MV
AW:	12

Q7*	HUMBER GATEWAY*

ry	UK	
r	E.ON	
ation year	2014	
er of turbines	73	
ne type	V112-3.0 MW	
	219	

The Netherlands

Shell & NUON

2006

36

Order pipeline

1,900 MW of firm orders secured, in line to supply a further 2,490 MW

Unconditional orders/ under installation

Aberdeen Bay	
Country	United Kingdom
Owner	Vattenfall
Installation year	2018
Number of turbines	11
Turbine type	V164-8.0 MW
MW:	92

Horns Reef 3	
Country	Den
Owner	Vatte
Installation year	:
Number of turbines	
Turbine type	V164-8.0
MW:	

Walney Extension

United Kingdom
DONG Energy
2017
40
V164-8.0 MW
330

Norther

Country	Belgiur
Owner	Norther N
Installation year	201
Number of turbines	4
Turbine type	V164-8.0 MV
MW:	37

Deutsche Bucht

Germany
British Wind Energy
2019
Not disclosed
V164-8.0 MW
252

mark enfall 2018 49

MW

406

Borkum Riffgrund 2

Dorikani Kingrana	-
Country	Germany
Owner	DONG Energy
Installation year	2018
Number of turbines	56
Turbine type	V164-8.0 MW
MW:	450

Borssele Country

Conditional orders

Owner Installation y Number of tu Turbine type MW:

Preferred supplier

e III & IV	1000	
	The Netherlands	
	Consortium	
year	Not disclosed	
urbines	Not disclosed	
e	Not disclosed	
	680	

Triton Knoll	
Country	United Kingdom
Owner	Consortium
Installation year	2021*
Number of turbines	90
Turbine type	V164-9.5 MW
MW:	~860

Moray East

Country United Kingdom Owner Consortium Installation year 2022* Number of turbines 100 Turbine type V164-9.5 MW MW: 950

Product development & launching

[V112-3.0/3.3/3.45MW]

- 1. Rich experience
- 219 V112-3.0 MW turbines or the equivalent of 662 MW installed offshore since 2013.
- Since 2010 more than 10 GW of V112-3.X MW turbines including for onshore have been installed around the world.
- 2. Thorough verification makes marvellous performance
- Various verification of components in a modern wind turbine test facility and in pre-production of actual wind turbines before serial production.

【V164-8.0MW】

Turbine design is based on the V112 proven technology and thorough verification is executed before serial production which enables both reliability and high performance as well as V112.

Full scale test facility for the entire power train Aarhus, Denmark

Stress and fatigue testing of blades Isle of Wight, UK

Full scale nacelle testing Lindø, Denmark

Product development & launching

Prototypes are installed to test power curve, power quality, installation techniques and service. Three V164-8.0MW provide invaluable knowledge and experience prior to going offshore.

The V164-8.0 MW prototype set a record in October 2014, producing 192,000 kWh in a 24 hour period, enough to power approximately 13,500 Danish households, demonstrating full capability.

Logistics, construction and installation techniques were tested during the erection of two V164-8.0 MW at Maade.

Service teams will also have invaluable opportunity to service and maintain the turbines.

Østerild Test Center, V164-8.0MW installed, Denmark

2 x V164-8.0MW installed, Maade Denmark

Reduction of delivery period of reliable wind turbines owing to over 20 years experience and continuous improvement

- Pre-assembly and onshore commissioning at Esbjerg facility enable lead-time reduction and reliability of products ٠
- Continuous improvement for installation ٠

2010 Thanet project (UK) V90-3.0MW x 100WTGs in 100days

2015 Luchterduinen project (Netherlands) V112-3.0MW x 43WTGs 2 WTGs/1dav

MHI VESTAS OFFSHORE WIND™

2015

43

Installation of Luchterduinen, the Netherlands (Film)

Project completed 3 months ahead of schedule

ENECO LUCHTERDUINENCountryNetherlandsOwnerEneco &Installation year2015Number of turbines43Turbine typeV112-3.0 MWMW:129

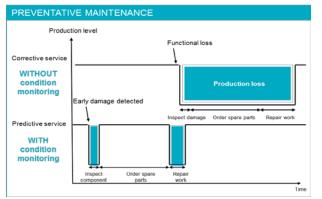
Embed Installation Video here

.

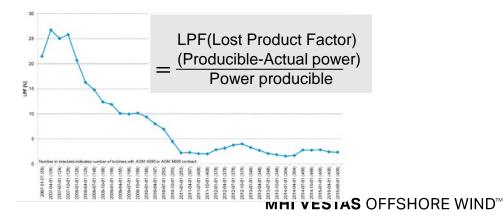
Commitment to the market; big data and predictive service reduces production loss

Monitoring **33,000+** wind turbines worldwide, by the Vestas Performance & Diagnostics Center (VPDC):

- Upto 500 data points /turbine every 10 mins
- Big data: 60 TB in total
- High speed event logging
- Vibration monitoring


Analysis of the data allows early anomaly detection:

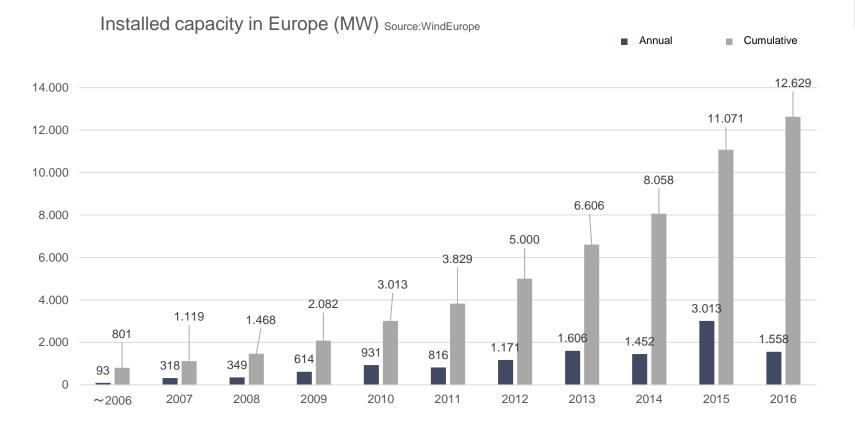
- Vibration patterns can reveal component irregularities that might need attention
- Preventive maintenance is therefore planned before potential damage to the wind turbine
- Planned regular maintenance and replacement

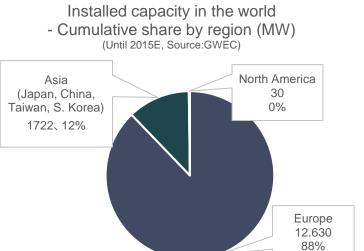

Minimize Lost Production Factor and warranty order

The Supercomputer

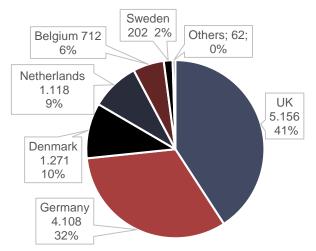
MVOW Fleet Lost Production Factor (LPF)

Agenda

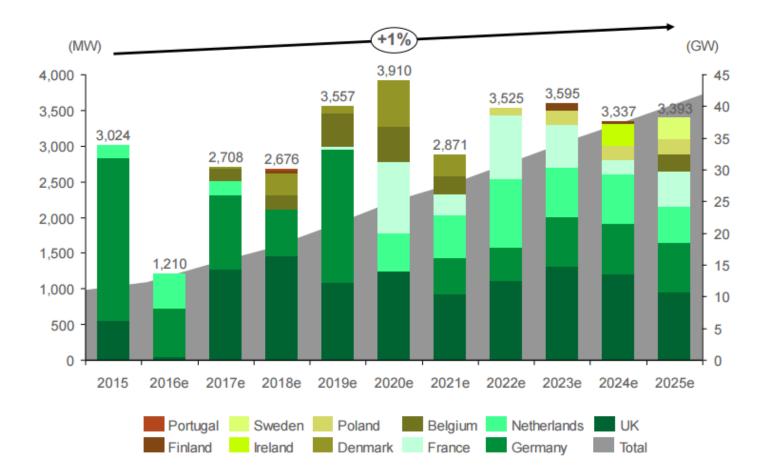

• Who we are


• Offshore Wind Market in Europe

• What we can deploy in Japan


Offshore wind power

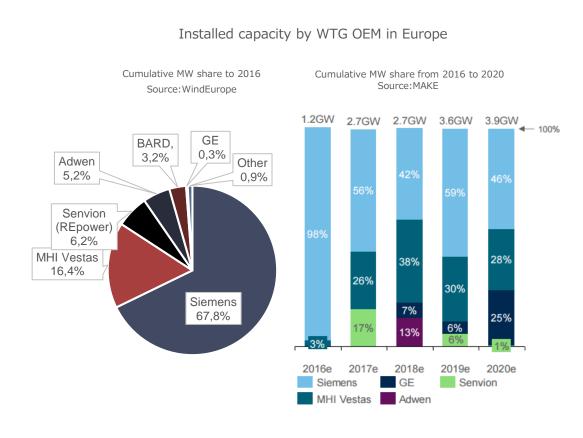
Over 90% are installed in Europe with high growth of 1 -2 GW/year. In European market, 5 countries (UK, Denmark, Germany, Belgium and Netherland) strongly lead the development and account for 97% of the market.

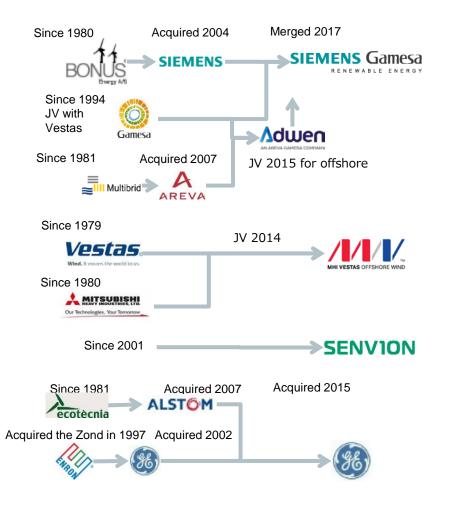


Installed capacity in Europe - Cumulative share by country (MW) (Until 2016E, Source: WindEurope)

European Offshore Wind Market | Future outlook

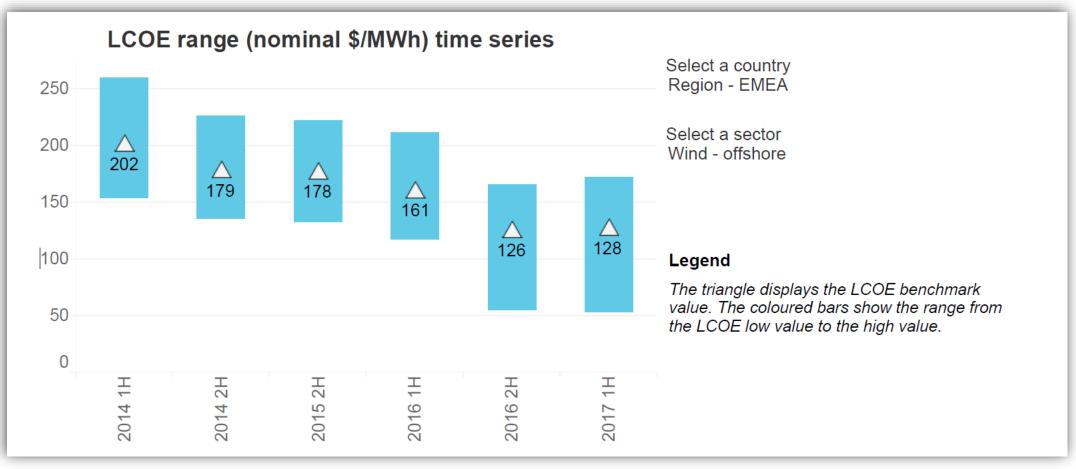
Driven by UK, Germany and Netherlands, so far the government has targeted new market of around 3GW/per year.



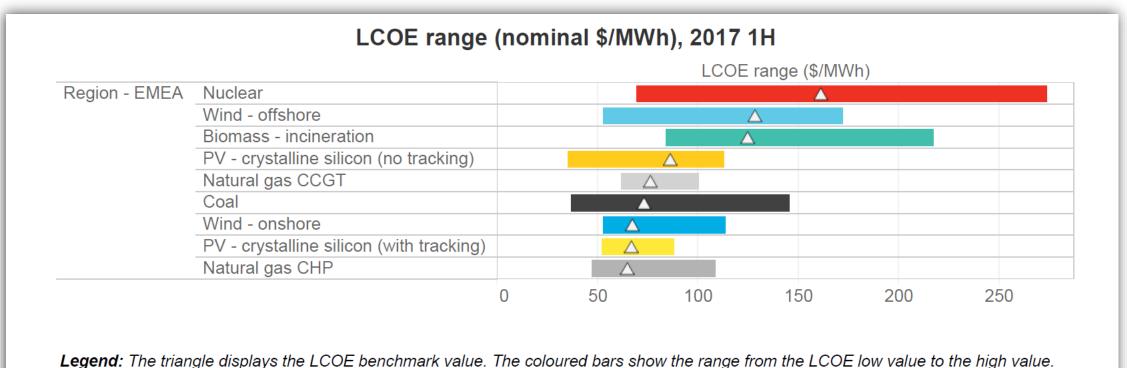

Figure 2. Offshore wind power market outlook for Europe, 2015 to 2025e

Source: MAKE

Offshore market overview - Competitors


Huge scale and risk of current offshore wind projects have accelerated consolidation by global power engineering giants, with two strongest WTG OEMs left accounting for 85% of European market.

European Offshore Wind Market | Trajectory of LCOE


Along with the growth of the market, LCOE also reduced rapidly over the past few years. Latest, it marked \$ 50/MWh.

Source: Bloomberg New Energy Finance

European Offshore Wind Market | Comparison of LCOE

Due to drastic reduction in LCOE, offshore wind power is recognized as a large power supply comparable to other energy supply in Europe. Project owners such as Ørsted (former Dong Energy) and E.ON, are concentrating their management resources on Renewable energy.

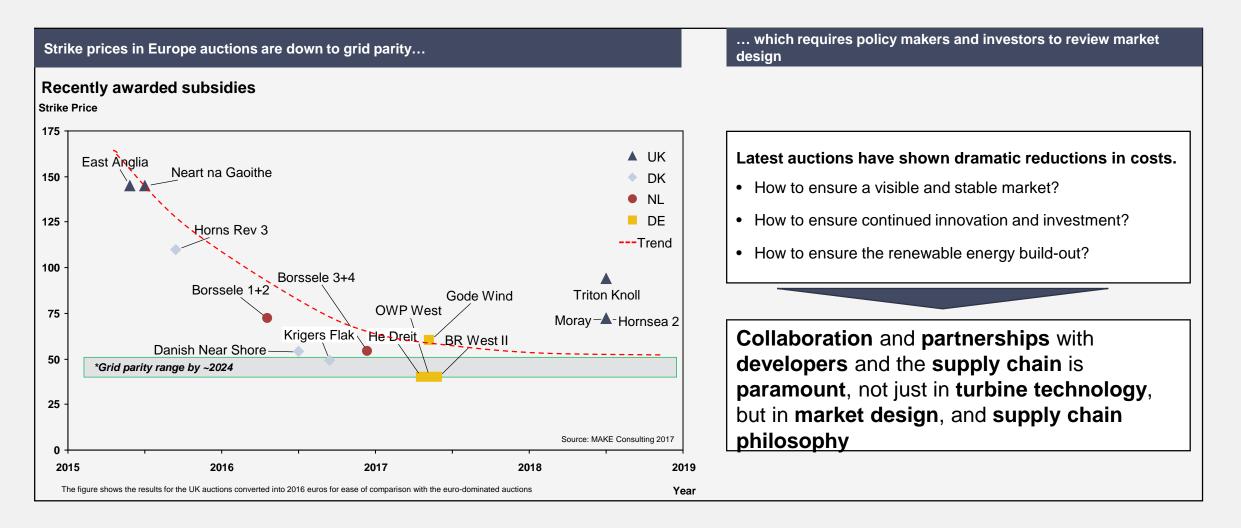
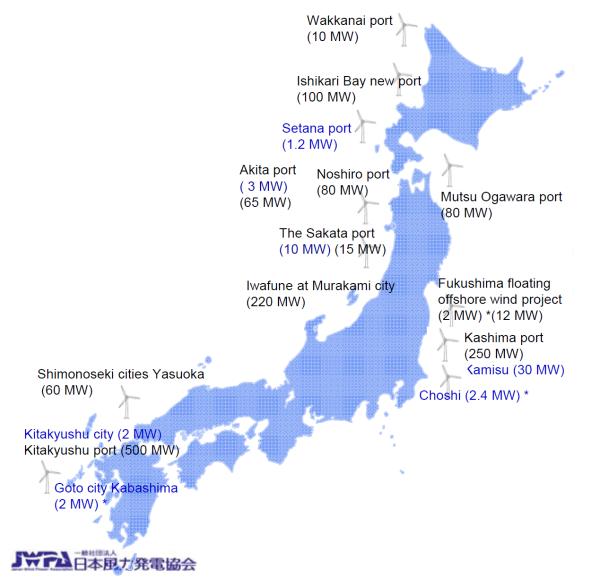


Chart: If the chart is blank, please change the date, country or sector selection above.

Source: Bloomberg New Energy Finance

Consequences of a market under rapid development.

Market design and strong regulatory framework are key elements.


Agenda

• Who we are

• Offshore Wind Market in Europe

• What we can deploy in Japan

Offshore wind farm project in Japan

Experience: 52.6 MW Planned: 1,392MW

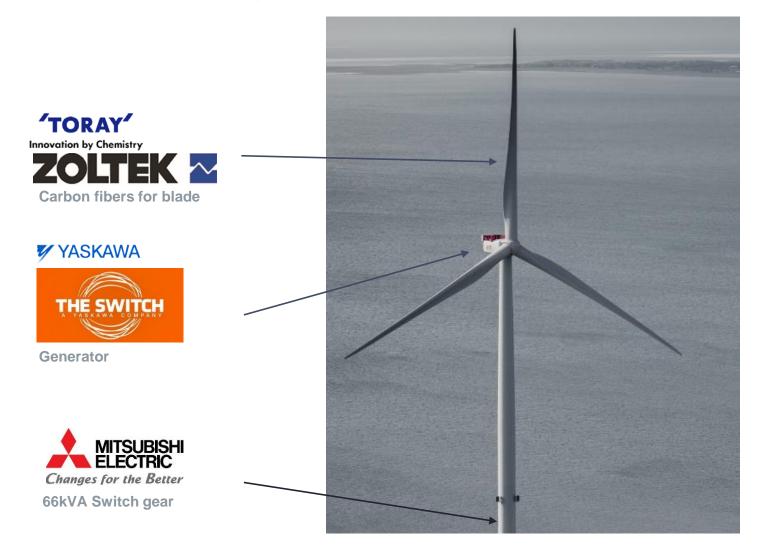
Source: including the meeting small commission term energy supply-demand projection (4th time)

Source: JWPA

Relationship with Japan | Transfer knowledge to Japan MVOW has kept intense dialogue with policy makers of Japan

His Imperial Highness the Crown Prince

Members of the House of Representatives (Economy, Trade and Industry Committee)



State Minister of Economy, Trade and Industry

State Minister of the Environment

Relationship with Japan | Collaboration with Japanese suppliers Japanese manufacturers are providing key components for V164-8.0 MW

Relationship with Japan | Investment by Japanese trading company Major Japanese trading companies have had significant footprint in offshore in Europe

Westermost Rough		Gunfreet Sands	nfreet Sands	Norther Country Belgium	LUCHTERDUINEN (Q10)		Borssele III & IV Country Netherland		
Country Owner Installation year Number of turbines Turbine type MW	UK DONG+Marubeni +UK GIB 201 35 SWT-6.0-154 210	Country Owner Installation year Number of turbines Turbine type MW	UK DONG+Marubeni +DBJ 2010 48 SWT-3.6-107 173	Owner Installation year Number of turbines Turbine type MW:	Eneco, Elicio N.V. & DGE(MC) 2019 Not disclosed V164-8.0 MW 370	Country Owner Installation year Number of turbines Turbine type <u>MW</u>	Netherland Eneco+ DGE(MC) 2015 43 V112 3.0 MW 129	Owner Installation year Number of turbines Turbine type MW:	Shell, Van Oor Eneco & DG /Mitsubishi Cor Not disclose V164-8.0 M 2 x 34
								#	
			THE .	Amsterda ©	am				
	Lon	don o	- hay	۔ جہ ⁻		\sim			
		Bru	ssels 🔊 🔪						
			ssels ©				•	onstruction)	
Belwind Fountry Installation year Jumber of Infoines		wind Belgiu Northwind N ion year 20	Nobelwind um Country Owner NV Installation year	(Under Construction) Belgium Nobelwind 2016-17 50		Cour Own Insta Num turbin	ntry er WPD Ilation year ber of nes	onstruction) Germany , Itochu, etc. 2015 80 SWT3.6-120	

Sumitomo Corporation

ITOCHW

Key actions to make Offshore Wind fly in Japan

"Offshore wind power was not built in a day". To transfer 25 years experience and know-how to Japan should be the best way to make offshore wind viable solution for sustainable energy mix in Japan

1. Strong commitment to offshore wind

- Long- term target of offshore wind deployment ensuring the visibility of market volume
- Stable but competitive support mechanism ensuring cost reduction
- 2. Clear roadblocks by provisioning the law and infrastructure
- Proper legislation framework and zoning by government
- Transparent and efficient authorization process
- Ensure grid connection
- Efficient environmental assessment procedure reflecting experience in Europe
- 3. Introduce the latest knowledge and experience of Europe
- Proven turbine technology, construction method and utilization of installation vessel
- Mature project management
- Contract / Risk Management Scheme, Finance structure
- O&M (Technical, operation method, ship operation etc.)

Let's move the horizon.

PRESENTER NAME Presenter Title