Energy Transition & Energy Technologies:

Moving towards sustainable future in Denmark and Japan

22 November 2017 (Wed.)

Recent topics of Hydrogen Energy & Renewable Energy in Japan

- Topics of Hydrogen Related Technology
- Hydrogen Generation using SC-Water
- "Eco-Island" Miyakojima, Okinawa
- Next step of Renewable Energy / Importance of Creativity Education

Dr. Haru-Hisa Uchida
Department of Environment Science,
School of Humanity and Cultures
TOKAI University

New Vehicles in Japan

- FCEV Fuel Cell Electric Vehicle
 - TOYOTA MIRAI, HONDA CLARITY
- PHV Plug-in Hybrid Vehicle
 - TOYOTA PRIUS
- EV Electric Vehicle
 - NISSAN LEAF


```
FCEV ~60kWh
114kW(3.1kW/L, 2.0kW/kg, 37L, 56kg) ~100
Ni-H, 34stack, 6.5Ah (0.3kWh)
H<sub>2</sub> tank: 70MPa 5.7wt% 3min 650 km/charge /4.3kgH<sub>2</sub>
¥7,240,000 - ¥2,250,000 (support) = ¥4,990,000
```

```
PHV ~40kWh

125kW
(1.8L,72kW/5.2krpm+53kW E-motor(68.2km),37.2km/L)
Li-ion 8.8kWh, 53kW
200V/16A: 2h20m, 100V/6A: 14hr, 20min
¥3,700,000 - ¥350,000 (support) = ¥3,350,000
```


ENEOS Nikko-Nisseki

H₂ Station, Ebina, Kanagawa Off-Site

Opened: 9:30~17:00

Closed: Saturday + National Holiday

H₂ Station, Mobile-Site

H₂ Station, Nerima, Tokyo On-Site

Opened:
13~15 hr
Wednesday,
Friday

Closed: Tuesday,

Wednesday

Chemical Heat Pump

- Without compressor
- Safety
- Cost decreasing

High
Pressure
Electrolysis
without
compressor

FCEV

8

TOSHIBA

Solar-Hydrogen System

Peak cut

Roadmap to 2040 by METI

Ministry of Economy, Trade and Industry, Japan

Saving Energy

2014 June 23 2016 March 22 Rev.

- Energy Security
- Decreasing Environmental Load
- Industry Promotion, Regional Vitalization

```
Phase 1 Dramatic enlargement of H<sub>2</sub> utilization Practical Installation of FC ~2020 PEFC 0.8MYen, SOFC 1MYen, H<sub>2</sub> cost ~ HV Fuel (~35km/L-G) FCV 40,000 cars, 160 H<sub>2</sub> stations ~2025 FCV 200,000 cars, 320 H<sub>2</sub> stations
```

~2030 FCV 800,000 cars

```
Phase 2 E-Power Plant by H<sub>2</sub>, Large scale H<sub>2</sub> supply system
```

~2020 H_2 from abroad ¥30 / Nm³

~2030 Large scale installation of H₂ supply and power generation

```
Phase 3 CO<sub>2</sub> free H<sub>2</sub> system
```

~2040 Large scale H₂ system with CCS (generation, storage, transportation)

Efficiency of Fuel Cell

METI NEDO

Super Critical State of Liquids

Table. Critical point of various liquids.

C_T: critical temperature , C_P: critical pressure

	$C_{T}(K)$	C _P (MPa)
H_2O	641.7	22.12
CO_2	304.1	7.83
CH_4	190.4	4.60
CH ₃ OH	512.6	8.09
CH ₃ CH ₂ OH	513.9	6.14

Application of Super Critical Water

Phase diagram (schematic) of super critical fluid.

SCF: supercritical fluid state,

CP: critical point,

TP: triple point

Decomposition of organic materials

Recycle of plastics

Super Critical State of Water

Temperature Dependence

Super Critical State of Water

Ion products of water,
Pressure and Temperature dependence

GC: Gas Chromatograph

SCW experimental (continuous reaction)

15

Temperature dependence

Fig. The concentration of gases from Glycerin decomposition.

Condition

Press: 25MPa

Conc.: 1wt%

Time: 7.5min

H₂ concentration ↑

16

Experiments with Isotopes (H, D)

Systematic Experiments

High-concentration hydrogen generation

- Carbon
- Oxygen
- Hydrogen

Condition

Temp. : 773K

Press.: 25MPa

Time: 7.5min

Supply: 40cc/min

Conc.: 1wt%

Hydrogen / Carbon, (H/C)
Atomic fraction

Generated Gases (GC-TCD)

Fig. Concentration of gases from samples decomposed.

SCW experimental (closed reaction)

SCW experimental (closed reaction)

With Solar Energy

Miyakojima Island

Mega-Solar Demonstration Facility

4MW + NAS 4MW (28,800kWh)

+ > 4MW at private sector

Ex. Generation of 19 Jan 2015 16.5°C

The Okinawa Electric Power Company, May 2014

Ex. Influence of weather

1.Jan 2014 (Fine weather with 8.8hrs sunlight 18.3C) and 21.Jan 2014 (Cloud with 0hr sunlight 14.3C)

Underground Water Dam

1. Renewable energy system in Miyakojima

Linkage of underground dam

Renewable Energy in Disaster

Next step of Renewable Energy

Problems in Connecting Grid System

Necessity of Ideas and challenging mind

Next step of Renewable Energy

Importance of Creativity Education

Tokai Univ. – Intellectual Property Education:

"IP Education as Education in Creativity"

To foster humanistic people who are creative and able to contribute to building a more affluent and peaceful society.

- Creative, entrepreneurial, and a respective spirit
- Promoting IP culture
- Fostering talented people for coming new society

Importance of Creativity Education

IP Education TOKAI Model

H.School Kind.Garden Elem.Sch. J.H.Sch. U.Grad. Graduate

Entrepreneurship Education (Vaassa Model)

Group working, Products thinking, Ideas, Venture Company

Intellectual Property Education (TOKAI Model)

(Copy Right)

(Patent, Trade Mark) (Patent writing)

(IP law)

(Specialist at Law-School (Fostering research fellows)

Creativity Education

Story telling*

Arts. Creative activity Discovering Engineering

Energy Transition & Energy Technologies:

Moving towards sustainable future in Denmark and Japan

22 November 2017 (Wed.)

Conclusions

- SCW may be used for H₂ generation from water including organic substances.
- Renewable energy should be utilized and increased under considering and using the natural future of the area.
- There, the system should be designed and constructed with also considering disasters.
- For the next step to the sustainability, plenty of new ideas and challenging mind are important for all.